A community for people who want to remain as healthy as possible as we age.

Scientists Keep a Molecule from Moving Inside Nerve Cells to Prevent Cell Death

(Case Western Reserve University) Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) is a progressive disorder that devastates motor nerve cells. People diagnosed with ALS slowly lose the ability to control muscle movement, and are ultimately unable to speak, eat, move, or breathe. The cellular mechanisms behind ALS are also found in certain types of dementia.
A groundbreaking scientific study … has found one way an RNA binding protein may contribute to ALS disease progression. Cells make RNA to carry instructions for making proteins from DNA to protein-constructing machinery.
The culprit protein, TDP-43, normally binds to small pieces of newly read RNA and helps shuttle the fragments around inside nerve cell nuclei. The study describes for the first time the molecular consequences of misplaced TDP-43 inside nerve cells, and demonstrates that correcting its location can restore nerve cell function. Misplacement of TDP-43 in nerve cells is a hallmark of ALS and other neurological disorders including frontotemporal dementia (FTD), Alzheimer's, Parkinson's, and Huntington's diseases. Studies that characterize common mechanisms behind these diseases could have widespread implications and may also accelerate development of broad-based therapies.
[Click the title, above, to post a comment.]

0 comments:

Post a Comment

Please do not give advice. We can best help each other by telling what works for us, not what we think someone else should do.